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Abstract Vicinity analysis (VA) is a new methodology
developed to identify similarities between protein binding
sites based on their three-dimensional structure and the
chemical similarity of matching residues. The major objective
is to enable searching of the Protein Data Bank (PDB) for
similar sub-pockets, especially in proteins from different
structural and biochemical series. Inspection of the ligands
bound in these pockets should allow ligand functionality to be
identified, thus suggesting novel monomers for use in library
synthesis. VA has been developed initially using the ATP
binding site in kinases, an important class of protein targets
involved in cell signalling and growth regulation. This paper
defines the VA procedure and describes matches to the
phosphate binding sub-pocket of cyclin-dependent protein
kinase 2 that were found by searching a small test database
that has also been used to parameterise the methodology.
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Introduction

The wealth of experimental crystallographic data now
available [1] enables the development of data mining

techniques that can contribute to the goal of knowledge-
based drug design. Given a known active site, it is now
possible to search the public database for proteins having
active sites that are similar, in terms of their three-
dimensional (3D) chemical structure, to the target site.
Active sites discovered this way may be only loosely
connected, in a biochemical, functional or phylogenetic
sense, to the target site and will therefore not have been
identified using traditional homology-based searching tech-
niques such as BLAST [2].

The lack of two-dimensional (2D) structural or func-
tional homology has not prevented the development of a
number of successful 3D homology models. Locally
conserved 3D structures are important despite the lack of
homology in secondary sequence or phylogenetics. Current
computational approaches to this problem are well known,
e.g. the CATH [3] database of observed protein structures,
and the CavBase [4] method of searching for similarity
amongst active sites.

The conservation of “sub-pockets” has important con-
sequences for drug design and, in particular, for the
construction of targeted combinatorial libraries. In the
combinatorial approach, a chemically tractable “scaffold”
is “adorned” with “flora” from the chemical universe.
These flora, in effect simple monomers that are amenable to
combinatorial chemistry, are selected either on the basis of
chemical diversity or are based on fragments known to be
of interest to the relevant pharmacology. In this latter
approach, small molecular weight compounds are screened
at high concentration to establish potential binding to a site.
Experimental, X-ray or NMR methods are then used to
confirm the binding and establish the fragment as a
potential piece of flora to add into a combinatorial design.

Medicinal chemists are interested in improving the
process of focussed drug design. This is often facilitated
by in silico approaches such as automated docking.
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Although in silico methods are useful for docking mole-
cules and fragments, they are less efficient at identifying
which are the most appropriate alignments to select. The
strength of the vicinity analysis (VA) approach is that it can
help the synthetic chemist to make that decision with
improved reliability. The growing knowledge base provided
by the Protein Data Bank (PDB) enables a data mining
approach. The identification of sub-pockets in proteins
having similar tertiary structure and chemically similar
residues, despite being functionally and phylogenetically
different, would enable a computational approach to the
rational design of potential generic monomers by the study
of ligands that are observed experimentally to bind in
“similar” sites. The PDB contains ca. 49,000 protein
structures. A significant proportion of these also contain
bound small molecule inhibitors. This represents a poten-
tially highly valuable source of (evidence-based) ligand-
binding interaction data. Computational approaches to this
problem would therefore appear to be very relevant.

There are various computational approaches available for
assessing the similarity between proteins. One approach is to
compare the structures of whole proteins similar to a 3D
version of BLAST. A good example is the TOP system [5].
This describes each protein secondary structure element as a
pair of points, which are systematically overlaid to give the
best match. Another approach is to look for similarities
between smaller parts of the proteins. LFMpro [6] uses the
distance field to backbone atoms to identify local features
specific to a particular protein family, distinguishing that
family from a training set of proteins in other families.
However, such methods look at the overall similarity of the
protein structures and are of most use in protein catego-
risation problems.

Of more interest to the medicinal chemist are methods
that attempt to match protein binding sites or pockets. The
FEATURE package [7] searches databases for similar
arrangements of physicochemical property spaces defined
from a training set of known sites of interest. The features
are defined by using a supervised learning algorithm on this
training set of known sites. An example is the identification
of new calcium binding sites from a training set of known
sites and sites known not to bind calcium.

When the binding site is known, detailed comparisons of
the site with other proteins in a database can be attempted.
Relibase [8] achieves this by performing matches of the Cα
positions of the target structure with those of the database.
The aim is to identify novel ligands based on the similarity
of their binding sites to the target. The ASSAM system [9]
searches for patterns of amino acids, defined as a set of
vectors between the backbone and the functional side chain,
using the Ullman subgraph isomorphism algorithm [10].
This geometric method has been applied to search for the
serine protease catalytic triad. SPASM [11] is another

method that identifies similar motifs by aligning the Cα
positions and the centres of gravity of the residues using an
exhaustive search.

Several methods for identifying and characterising
protein binding sites are based on graphs where nodes
represent certain features and edges are labelled by inter-
feature distances. Pairs of such feature graphs are compared
by combining them into a secondary, correspondence graph
in such a way that a maximal set of matching features is
represented in the correspondence graph by a clique: a set
of nodes where each node is connected to every other node.
For example, Samudrala [12] describes a system where the
interaction energy between the sidechain and backbone of
each residue, plus up to four of its neighbours, are used to
form the nodes in an undirected graph. Clique analysis is
then used to determine structural similarities. The SURF-
COMP program [13] also uses clique analysis, this time
with the pockets defined as collections of critical points on
molecular surfaces rather than as simple atom positions or
other geometrical constructs.

By recommending VA for this task, we are proposing a
“direct-evidence” based approach that uses experimental
data as a source to identify which small molecule fragments
are most likely to bind into a pocket or sub-site. The results
of VA can therefore be used as a basis for guiding a
focussed drug design campaign. The key is to find similar
micro environments in a binding site and using this to
‘map’ ligand fragments into a target cavity.

VA also provides a technique for finding similar small
molecule binding sub-sites based on similarity of proximate
residues. Residue similarity can be estimated using any
appropriate descriptor metric, e.g. phylogenetic or chemical
similarity. The VA algorithm identifies sub-site matches
between the target query and a data set of crystal structures
using a clique detection algorithm. Development of this
technique has been facilitated using the ATP binding site in
the kinase family of proteins, an important class of protein
targets involved in cell signalling and growth regulation.
This example was chosen because it provides a test set with
known geometries for each sub-site.

The aim of this work is to develop a technology to mine
PDB ligand-binding data that can be readily exploited in
rational drug design programmes. The approach identifies
similarities between ligand-binding sites based on the 3D
coordinates of the residues and the degree of chemical
similarity between matched residues.

Methods and theory

The presence of an active site within a PDB entry is
indicated by the inclusion of a HET record for a ligand.
HET records corresponding to metals, salts or modified
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amino acids are omitted, and each of those remaining is
considered a bona fide ligand, defining an active site
formed by the set of residues sufficiently close to the
ligand. A residue is considered to be within the active site if
the shortest distance between the centres of atoms in the
residue and the ligand is less than the sum of their atomic
radii plus an interaction tolerance Itol. The atomic radii used
were based on the values in the CHARMM [14] united
atom force field.

To reduce the number of distance calculations required,
each active site was identified in two stages, using a
modification of the LPC procedure of Sobolev et al. [15]. In
the first stage, each residue was treated as a sphere based at
the centre of gravity, RC, of the residue’s atom centres, with
radius RR equal to the maximum distance from RC to a
residue atom centre. Similarly, the ligand was treated as a
sphere based at its centre of gravity, LC, with radius LR.
Letting MR denote the maximum atomic radius, residues
with RC further than RR + LR + 2MR + Itol from LC were
discarded as they cannot fall within the active site. In order
not to artificially reject residues close to, but not directly in
contact with, the ligand Itol was set to 4.5 Å. The procedure
is illustrated in Fig. 1. In the second stage, the remaining
residues were processed atom-by-atom, checking whether

the distances between any pair of residue and ligand atom
centres fell within the prescribed range.

Vicinity analysis takes pairs of binding sites S and T
identified as above and attempts to identify sub-pockets that
can be matched in a one-to-one fashion so that they have
similar 3D geometry, in terms of the relative positions and
orientations of matching residues, and so that matching
residues have similar chemical properties. Geometric
similarity is based on the inter-residue distance, d, defined
by the Euclidean distance between the Ca positions. A
measure of chemical similarity between residues was
obtained by Hellberg et al. [16] from the principal
components of a matrix of 29 physicochemical properties
for the amino acids (including molecular weight, several
partition coefficients, NMR chemical shifts and high
performance liquid chromatography retention times). The
first three principal components z1, z2 and z3 are broadly
associated with hydrophilicity, bulk and electronic proper-
ties, respectively. The chemical similarity employed by VA
is based on the inter-residue distance δ measured in the 3D
chemical property space defined by z1, z2 and z3.

Similar sub-pockets are found by locating the cliques of
a specially constructed correspondence graph [17]. This
graph G has a vertex for each pair of residues (s, t), where

Fig. 1 Identification of poten-
tial binding sites
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s ∈ S and t ∈ T, and two vertices representing pairs (s, t) and
(s’, t’) are joined by an edge if

d s; s0ð Þ � d t; t0ð Þj j < Dtol and max d s; tð Þ; d s0; t0ð Þf g < Ctol

ð1Þ

where Dtol and Ctol are preset tolerances. A clique of G is a
complete subgraph of G ; that is, a subgraph in which each
vertex is connected to every other vertex [18]. Cliques of G
represent sets of matching residue pairs that satisfy
collectively both the geometric and chemical constraints
in Eq. 1. The Bron-Kerbosch algorithm [19] was used to
find the maximal cliques of G.

Several measures are used to filter and rank the VA
results, which may include large numbers of matches. The
size of a clique is the simplest indication of match quality,
and cliques below a minimum size Cmin are discarded. To
establish the geometric quality of matches, for each clique
the two matching sub-pockets are aligned by a least-squares
rigid-body fit of the corresponding Ca positions and the
resulting root mean square distance (RMSD) calculated.
Matches with RMSD greater than some value Rmax are
discarded. An additional option is to measure the relative
orientations of matched residues in their respective sub-
pockets. For each matching pair of residues, the angle θ
between the aligned Ca ! Cb vectors is found. If θ is
greater than some preset bound θmax the offending vertex is
removed from the clique and the reduced clique is re-
assessed (for glycine this step is omitted). The mean
chemical distance (MCD), the mean of the distances δ(s, t)
between matching residues in the chemical property space,
provides an indication of the chemical quality of the match.
The filters applied in the present work were Cmin=4, Rmax=
1.5 Å, and the matches were ranked by clique size, MCD
and RMSD. In the following examples the θmax tolerance
was not used.

Results and discussion

In order to test the algorithms, a small set of 98 proteins
containing 128 pockets with bound ligands was selected
from the PDB. All the proteins in the test database are
derived from X-ray structures and were chosen to include
members of several different superfamilies. The distribution
of binding pockets comprises 40 kinases (the primary
superfamily of this study), 19 transferases, 19 proteases, 42
hydrolases and 8 others (including nucleases, aldolases,
etc). The test query comprises a sub-site consisting of eight
residues from the ATP binding pocket of cyclin-dependent
protein kinase 2 (CDK2; PDB code 1AQ1). The query sub-
site consists of eight residues: GLY13, TYR15, VAL18,
LYS33, LYS129, GLN131, ALA144 and ASP145. Figure 2

shows the query sub-pocket with a bound ligand, staur-
osporine, depicted using SYBYL [20]. This set of residues
comprises a readily identifiable micro-environment for
binding the triphosphate group of ATP in CDK2.

Table 1 shows the matching residues between the test
query and c-AMP-dependent protein kinase (PDB ref
1ATP). This represents a different type of kinase from
CDK2 from which the query was derived. VA has identified
a clique of size seven with an RMSD of 1.09 Å between the
matching residues, and it can clearly be seen that most of
the residues match not only in terms of the Ca positions but
also in terms of chemical similarity. In fact, five of the
seven residues in the clique are identical, and the other two
are conservative replacements (Ala144–Thr183 and
Gln131–Glu170). Furthermore, the values for the Ca !
Cb angles are all below 30°. The overlay of the query with
the matching residues in 1ATP is shown in Fig. 3.

A more interesting example is shown by the match
between the test query and catechol O-methyl transferase
(PDB ref 1JR4). This gave a matching clique of size five
with an RMSD of 1.4 Å. The matching residues are shown
in Table 2. Four of the residues are exact matches and the
other match is a phylogenetically conservative replacement
(Gln131–Arg146). Figure 4 shows the overlay of this
pocket with the target query. It is of interest that the ligand
involved in 1JR4 is similar to ATP in that it also possesses
an adenine ribonucleoside, but in this case it is attached to a
2,3-dihydroxy-5-nitrophenylamido moiety. This is illustrat-
ed in Fig. 5, where the circles indicate the possible

Fig. 2 Cyclin-dependent protein kinase 2 (CDK2) test query with
staurosporine (1AQ1)
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bioisosteric replacement of the triphosphate group. Thus,
VA has shown its utility in identifying ATP-like binding
sites in proteins other than the query, and also its potential
for identifying putative binding sites, and hence bioisosteric
ligands, derived from ligand matches in other classes of
proteins.

A series of experiments was performed matching the
CDK2 phosphate binding pocket against the test database
to identify the parameters Dtol and Ctol that best discrim-
inate between the kinase and non-kinase subsets. In this
context, a binding pocket in the database is predicted to
belong to a kinase if a clique is found matching that pocket
to the CDK2 pocket. This procedure relies on the
assumption that the phosphate-binding sub-pocket is pres-
ent in most of the kinase set of proteins and absent in most
of the non-kinase proteins. The VA program was run for a
2D grid of Dtol values from 1.0 Å to 4.0 Å in steps of 0.1 Å,

and Ctol values from 2.0 to 6.0 in steps of 0.1, and a
confusion matrix, showing the numbers of true and false,
positive and negative results, was generated for each (Dtol,
Ctol) pair. For each value of Dtol the area under the receiver
operating characteristic (ROC) curve, obtained by plotting
the sensitivity (no. of kinase hits / total no. of kinases)
against 1-specificity (no. non-kinase misses/total no. non-
kinases) for each value of Ctol, was calculated. The optimal
value of Dtol was chosen to maximise this area. The optimal
value of Ctol was chosen to correspond to the point in the
Dtol optimal ROC curve closest to the upper left corner (x=
0, y=1) of the plot.

ROC curves for several values of Dtol are shown in
Fig. 6. The areas under the ROC curves for Dtol in the range
from 1.0 Å to 4.0 Å, obtained by matching the CDK2
kinase phosphate binding pocket against the test database,
are plotted in Fig. 7. The largest ROC area (0.87) occurs
when Dtol=2.8. The point on the ROC curve for Dtol=2.8
closest to the upper left corner corresponds to a value of
Ctol=3.4. Hence the optimal parameters were chosen to be
Dtol=2.8 and Ctol=3.4.

To further test the utility of VA, the CDK2 test query
was matched against a diverse database of 1,000 active sites
extracted from X-ray crystal structures, selected at random
from the PDB and using the parameters derived above.
Figure 8 shows the best match of the CDK2 query against
this expanded dataset (PDB code 1E1X). The match is a
clique of size six with a Ca RMSD of 0.92 Å. This structure
is that of CDK2 co-crystallised with a different ligand
(NU6027). It is encouraging that VA has identified this
match.

Figure 9 shows a match with hydroxysteroid dehydro-
genase complexed with NADPH+ (PDB code 1EQU)
comprising a five-residue clique with an RMSD of 1.36 Å
and a mean chemical distance of 0.8. Despite the low
chemical similarity of the match, the ligand is similar to
ATP in that it contains adenine and phosphate moieties,
although these are not visible in Fig. 9 as they lie some
distance from the binding site. This match gives further
confidence in the validity of the methodology.

Figures 10 and 11 show the matches found with 1JG1 and
1LEV. Figure 10 is 1JG1, which is protein-L-isoaspartate(D-
aspartate) O-methyltransferase(1JG1) complexed with

Table 1 A clique of size seven
matching the phosphate sub-
pocket with c-AMP dependent
protein kinase (1ATP)

Phosphate sub-site 1ATP Ca ! Cb angle Chemical similarity

ASP 145 ASP 184 18.6 0.000
ALA 144 THR 183 20.5 1.753
GLY 13 GLY 52 0.0 0.000
VAL 18 VAL 57 5.4 0.000
LYS 129 LYS 168 9.9 0.000
GLN 131 GLU 170 4.7 1.405
LYS 33 LYS 72 1.2 0.000

Fig. 3 Match of test query with 1ATP
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S-adenosyl-L-homocysteine. The clique size was five and
the RMSD was 1.25 Å. This represents a very dissimilar
protein, albeit with a similar ligand. Figure 11 is fructose-
1,6-biphosphatase (1LEV) complexed with 3-(2-carbox-
yethyl)-4,6-dichloro-1H-indole-2-carboxylic acid. This has
a clique size of six with an RMSD of 1.33 Å. This contains
similar residue matches but a very dissimilar ligand.

The above examples demonstrate the utility of the VA
approach. An advantage of the method is that other
similarity measures and associated tolerances can be easily
incorporated. This includes geometrical as well as chemical
tolerances. As an example of this, the crystallographic B
factors have been included as an extra tolerance. It is well
known that the atomic positions in crystal structures have a
degree of fuzziness due to a combination of experimental
error and thermal fluctuations in the structure. This would
suggest that the distance tolerances for atoms with large B
factors can be relaxed compared to those with lower B
factors. These B factor tolerances are incorporated by using
a value of Dtol that varies with the B factors of the
associated atoms.

Preliminary experiments suggest that this improves the
results, giving more, better quality matches. For example,
incorporation of a B factor tolerance within the CDK2
query identifies two additional high ranking hits (2PHK
clique size seven, RMSD 1.046 Å, and 1O6K clique size
seven, RMSD 1.246 Å). These matches are not identified
using the static tolerances and are at positions three and four
in the new ranking. The top two matches remain the same. In
addition, this loosening of the tolerances identified an extra
kinase from the test database at the expense of an increase in
the number of non-kinase matches (from 11 to 24).

Comparison with other methods

In order to validate the algorithm, the above results were
compared with those obtained using the standard primary
sequence alignment routines in BLAST and PSI-BLAST, as
well as with results obtained using the 3D algorithm
SPASM.

For the simple case of matching of the 1AQ1 pocket
with the other kinases in the dataset, the sequence
alignment results are similar to those obtained with VA.
Using the 3D chemical similarity matrix with the optimal
tolerances of Dtol=2.8 and Ctol=3.4 described above, VA

Table 2 A clique of size five
matching the phosphate
sub-pocket with catechol
O-methyltransferase (1JR4)

Phosphate sub-site 1JR4 Ca ! Cb angle Chemical similarity

ASP 145 ASP 141 126.1 0.000
LYS 129 LYS 144 107.7 0.000
TYR 15 TYR 68 47.1 0.000
GLY 13 GLY 66 0.0 0.000
GLN 131 ARG 146 46.7 3.121

Fig. 4 Match of test query with 1JR4 Fig. 5 Putative phosphate bioisosteric replacement in 1JR4

494 J Mol Model (2009) 15:489–498



identified 29 of the 40 kinase sites as being close matches.
The standard BLAST analysis identified only four of these
structures, based on the sequence alignment of the whole
proteins. PSI-BLAST gave much more similar results to
those of VA, identifying 19 of the kinases. Most of the high
ranking hits identified by VA can also be identified by a
simple PSI-BLAST analysis. There were, however, four of
the VA kinases that were not identified by PSI-BLAST,
whilst PSI-BLAST identified one kinase that was not
identified by VA. This is not surprising since the kinase
set was chosen as a well defined problem with which to
calibrate and validate the methodology. Across the set, the
sequence similarity of the non-identical kinases to CDK2 is
between 52% and 64% and it is therefore to be expected
that sequence alignment tools will perform well in this case.

Of more interest is to compare the performance of VA
and PSI-BLAST in identifying similar pockets in non-
kinase proteins, since this is the major rationale for the

development of the VA methodology. In these experiments,
a subset of the CDK2 sequence (residues 15–147) was used
for the BLAST alignments. This sequence covers the range
of the residues in the CDK2 ATP binding pocket, and was
compared with the full sequence of the non-kinases in the
dataset. Neither BLAST nor PSI-BLAST was able to find
any significant sequence similarities in these structures.
However, VA identified several non-kinase pockets as
matches to the CDK2 test query and the five highest
ranked of these are listed in Table 3. Three of these proteins
have ligands closely similar to ATP (AMP in the case of
1FRP, 2′-deoxyadenosine-5′-diphosphate for 1G4A, and
1JR4, discussed previously). Table 3 also shows the results
of a structural comparison of the proteins containing
the non-kinase matches and the test query obtained using
the DaliLite program [21]. These consist of the Z-score, the
number of residues matched by DaliLite, the RMSD
between matched alpha-carbons and the percentage se-
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Fig. 8 Match of test query with 1E1X

Fig. 9 Match of test query with 1EQU

Fig. 10 Match of test query with 1JG1

Fig. 11 Match of test query with 1LEV
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quence similarity between the matched residues. From
these results it is clear that the non-kinase matches found by
VA belong to proteins that are not homologous to CDK2.
The DaliLite matches have low sequence identity, large
RMSD and Z-scores below the value of 2.0 required for a
significant match.

Since the sequences are identical, when the same
analysis is performed using the geometry of the 1E1V site
(from the CDK2/ATP structure), once again no hits are
found using PSI-BLAST. However, additional matches in
non-kinase proteins were identified by VA; the highest
ranked of these are listed in Table 4. The optimal DaliLite
matches between these proteins and the 1E1V query,
reported in the last four columns of Table 4, show that
these VA matches also come from proteins that are
structurally dissimilar to the query. In this case, the Z-
scores for 1KNY lie above the 2.0 value required for
statistical significance, but well below the value of 8.0
required for a probable homologous match.

The 3D method most closely related to VA is SPASM.
This uses a depth-first search to find matches to the whole
query pocket, rather than the maximal clique procedure
employed by VA that enables the identification of matching
sub-pockets. Both programs allow matching either solely
on the Ca positions or with an additional constraint on
residue orientation, through the use of the residue centres of
gravity in SPASM and the Ca � Cb vectors in VA. The
default residue replacements allowed by SPASM are based
on a phylogenetic similarity matrix (BLOSUM-45), but if
this is over-ridden to use the replacements determined by
the VA Ctol parameter, then the hits found by SPASM for a
fixed subset Q′ of the query are essentially the same as the
subset of VA cliques containing Q′. To obtain results
equivalent to those of VA, the SPASM program would have

to be applied to all possible subsets of the query, down to
the minimum clique size. VA therefore provides a much
more extensive selection of hits in a single run than SPASM
thus allowing parameter optimisations of the type presented
here, which would be extremely labourious with SPASM.

Conclusions

Vicinity analysis can be used to match ligand-binding sites
between proteins with similar active sites. It has been
exemplified using the phosphate subsite of a known kinase
and has identified matches with both other kinases as well
as non-kinases from a diverse database. The method has
been successfully applied to the problem of matching a test
kinase sub-site with other kinases from a diverse database
of proteins. Identification of these matches means the
associated ligand fragments can be used in a focussed drug
design campaign.

Vicinity analysis is capable of detecting areas of
similarity across different protein superfamilies. The soft-
ware has the ability to analyse any protein structure for
areas of similarity. Because the phosphate pocket was
derived from CDK2 (1AQ1), these areas of similarity can
be used to suggest potential drug fragments that are specific
targets for kinases. In the case of 1JR4, the area of
similarity, i.e. the five matching residues, contain a drug
fragment in the terminal ligand group that may act as a
phosphate isostere. This illustrates the capability of the tool.

The approach could also be used to suggest molecular
fragments for any given protein, and so reduce the time
required to design novel ligands and, ultimately, drugs that
fit it. Identification of the correct maximal clique is, of
course, critical to the power of the approach. The matches

Table 3 Non-kinase hits identified by vicinity analysis (VA) as matches to the 1AQ1 query pocket, with details of the DALI structural
comparison. PDB Protein Data Bank, RMSD root mean square distance

PDB code Protein Type Z-score Aligned residues RMSD Sequence identity (%)

1FRP Fructose-1,6-biphosphatase Hydrolase 0.7 64 4.8 2
1JR4 Catechol O-methyl transferase Transferase 1.2 40 3.6 5
1A2T Staphylococcal nuclease Nuclease 0.2 65 10.1 3
1G4A ATP-dependent HSLV protease Protease 0.1 67 4.3 7
1A16 Aminopeptidase P Peptidase 0.6 63 7.1 8

Table 4 Non-kinase hits identified by VA as matches to the 1E1V query pocket, with details of the DALI structural comparison

PDB code Protein Z-score Aligned residues RMSD Sequence identity (%)

4FUA L-Fuculose-1-phosphate aldolase 0.5 54 3.4 9
1A3L Exo-dielsalderase antibody complex 0.9 42 3.5 14
1KNY Kanamycin nucleotidyl transferase 3.4 96 4.8 8
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identified with VA, together with knowledge of the
associated ligand, can be used to develop novel fragments
for drug design.
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